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Interface Motion in a Two-Dimensional Ising Model 
with a Field 
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We determine by Monte Carlo simulations the width of an interface between the 
stable phase and the metastable phase in a two-dimensional Ising model with 
a magnetic field, in the case of nonconversed order parameter (Glauber 
dynamics). At zero temperature, the width increases as t ~ with fl---1/3, as 
predicted by earlier theories. As temperature increases, the value of the effective 
exponent/~ that we measure decreases toward the value 1/4, which is the value 
in the absence of magnetic field. 
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1. I N T R O D U C T I O N  

In the two-dimensional  Ising model, the dynamics of the interface between 
two phases has been the subject of recent interest. ~'2) In the case without  
magnetic field, if one starts with a sharp interface and lets it evolve via 
Glauber  dynamics (nonconserved order parameter) ,  the t ime-dependent 
behavior  of  the interface has already been studied. ~'2) It is the purpose of 
this paper  to examine the case of  nonzero  magnetic field, for different 
temperature regimes. 

We first describe the situation that we want  to study and then give the 
details of the computa t ional  method. In a nonzero  magnetic field, let us 
consider the metastable phase and the stable phase coexisting together, 
separated by a sharp straight interface. We want  to let the system evolve 
via Glauber  dynamics. Two processes will take place. First, the front 
between the stable phase and the metastable phase will advance. Second, 
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there will be some nucleation of the stable phase within the metastable one. 
We want to have a sufficiently low nucleation rate of droplets, so that the 
concept of an interface between stable and metastable phases still makes 
sense after many Monte Carlo steps. Therefore, one should have 

h 
/3 > re----5, (1) 

where 7 is the surface tension and h the magnetic field. 
Another constraint is that the magnetic field be strong enough to 

overcome the nucleation barrier. To be specific, let us consider the case of 
zero temperature for an interface initially oriented along the (1, 0) direction. 
If the field h is lower than 2J, where J is the coupling constant, nothing will 
happen. The situation is different if one considers an interface oriented 
along the (1, 1) direction. Any spin which is right at the interface has now 
two neighbors parallel to itself and two neighbors antiparallel. If a spin of 
the metastable phase which is right at the interface is flipped, it will still 
have two neighbors parallel to itself. Therefore, there is no nucleation 
barrier. We prefer to focus on this case of (1, 1) orientation because the 
field can be monitored from zero to any arbitrary value, provided that (1) 
still holds. 

The case of zero temperature is exactly equivalent to the single-step 
model, (3-6) which is related to the Kardar-Paris i-Zhang (KPZ) equation. (7) 
The width w of an interface of size L is known to scale (8) as 

w~LXf(tL z) (2) 

where t is time (number of Monte Carlo steps per spin) and Z and z are 
a static and a dynamical exponent, respectively. In two dimensions, Z and 
z are known to be 1/2 and 3/2, respectively. (7) For nonzero temperature, 
the interface can no longer be described by simplified solid on solid (SOS) 
type models, because of holes and overhangs. 

2. C O M P U T A T I O N A L  M E T H O D  

We now discuss the details of the numerical computation. First, one 
has to prepare a stable phase. When the temperature is not close to the 
critical temperature T c, relaxation times to equilibrium are of the order of 
a few MC steps per spin. It suffices to start from a state with all the spins 
parallel to the field and to let it evolve under Glauber dynamics for a few 
MC steps. The same holds for the metastable phase, except that one starts 
with spins antiparallet to the field. Two systems of length L and height H 
are prepared, one in the stable phase and one in the metastable phase. 
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Periodic boundary conditions are used in both the vertical and the 
horizontal direction. At time t = 0, one glues the two systems together in 
the following way. For  ordinates y such that 0 <~ y <~ HI4, one has the 
stable phase, and for HI4 < y ~ H, one has the metastable phase. The 
simulation then continues. Spins are chosen randomly and successively 
updated. 

At this stage, one might wonder why one does not divide the system 
into two sublattices in order to achieve vectorization and obtain a faster 
algorithm. The reason is that, if one does so, and updates all the spins of 
a sublattice in parallel, then at sufficiently low temperatures, the interface 
tends to have locally the shape of the sublattice. This introduces an extra 
contribution to the width, (9~ which is due to short-length-scale undulations 
and has nothing to do with the long-wavelength fluctuations we are 
interested in. Though this extra width is unimportant, in principle, in the 
limit L ~ o% it makes the numerical data more difficult to analyze and 
leads eventually to larger error bars. 

We have to use random updating of the spins because otherwise, at 
zero temperature, we would obtain a front that propagates and after one 
MC step all the spins of the metastable phase would have been flipped. 
Suppose, for example, that the spins are numbered for height H =  1, from 
the right to the left from 1 to L, and for H = 2  from L +  1 to L 2, and so 
on up to the last spin (number H x L), which is at the right uppermost 
corner of our box at H =  L. Then, if we update the spins sequentially, we 
will flip all layers one after the other, starting from the one immediately 
above the interface. 

When H x L attempts have been made, we say that we have one MC 
step per spin (on average). From now on, the number of MC steps per spin 
will be referred to as time t. There are two interfaces, one initially located 
at y = HI4, the other at y = 0 (because of the periodic BC in the vertical 
direction). The average position of the interface initially located at y = HI4 
will move upward and the interface initially located at y = 0 will move 
downward such that after some time, the metastable phase will have 
disappeared. We now explain the procedure that we adopted in order to 
avoid this disappearance. The average position of the interface initially 
located at y = H/4 reaches 3H/8 at some time we denote by tl. At time tl, 
we take the part of our system contained between the planes y = 1t/8 and 
y = H/2. The interface of interest lies in that part. With this part, we make 
a new system of length L and height H, consisting of, (1) for y <<. 3H/8, the 
above-mentioned part of our old system which contains the interface, and 
(2) for y > 3H/8, a part of a metastable phase which has been evolving via 
Glauber dynamics for time tl, and was at time t - - 0  with all spins 
antiparallel to the field. 
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We see that we need to run, in parallel with our system, another box 
of length L and height H containing a metastable phase (actually, a box of 
height 5H/8 would be sufficient). The part of our old system for which 
y <~ HI8 is simply discarded. The correlations in the vicinity of the line 
y = 3H/8 will be somewhat perturbed by our gluing procedure, but after a 
few MC steps, correlations should have relaxed toward those of the steady 
state, provided one is not close to a critical point. Since this gluing occurs 
at a distance HI8 from the average position of the interface, if H is 
sufficiently large with respect to the width of the interface, it will not 
perturb the interface. This whole procedure is reminiscent of what is 
usually done for the Eden model, where only the active part of the cluster 
is stored. (1~ 

For the average position of the interface and its width, we used the 
standard definition. (n) For an interface located in a strip 

g m i  n ~< y ~ Hmax  

the normalized gradient g(y) is defined as 

g(y) =- [M(y + 1) - M(y)]/[M(Hmax) - M(gmin) ] (3) 

where M(y) is the magnetization of the layer at height y. The average 
position of the interface is defined as 

Hraax 
<y>= ~ M(y)y (4) 

y = Hmin 

The squared width of the interface o) 2 is then 

w 2 _  <y~> _ <y>2 (5) 

3. S I M U L A T I O N S  A N D  R E S U L T S  

We first have to show that our two-dimensional Ising program 
correctly reproduces some of the properties of the single-step model at very 
low temperature. From (2), it follows that 

w ~ t ~ (6) 

with 

# = z/z (7) 

if t ~ L  z. We measured the exponent /3 and therefore had to use large 
systems and times much smaller than U.  Figure 1 shows in w 2 versus In t 
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Fig. 1. Plot of In w 2, where w 2 is the squared width of the interface, versus In t, t being the 
number  of Monte  Carlo steps per  spin, for a magnetic field h = 0.1 and inverse temperature 
1/kT= 40. Systems have length L = 4000 and height H = 256. Averages have been taken over 
eight samples. The solid line is a least square  fit to the data in the range 20 ~< t ~< 990, giving 

fl - 0.34. 

for systems of length L = 4000 and height H = 256 at an inverse temperature 
1/kT=40 and magnetic field h = 0.1, in units of J, the coupling constant. 
Results have been averaged over eight samples. To calculate the width [-see 
Eqs. (3)-(5)] ,  we used amin=n/8 and Hmax=n/2. Simulations were 
carried on SUN sparc workstations. A least square fit in the region 
20 ~< t ~< 990 gives 2 / /=  0 .68_ 0.015. This is compatible with the theoretical 
prediction /~= 1/3, valid for zero temperature/3'7) We also simulated 
smaller systems on a Cray YMP, up to lengths L = 500 and heights H =  128. 
We ran 64 samples at the same time and performed the vectorization on 
the number  of samples. About 6.25 spins were treated per microsecond 
on one Cray Y M P  processor as opposed to 0.045 spins per microsecond on 
the SUN sparc workstations. No evidence of finite-size effects was found 
and the value o f / / w a s  also compatible with/3 = 1/3. 

Next, we turn to higher temperatures. Figure 2 shows In w 2 versus In t 
for different inverse temperatures 1/kT between 1/kT= 1 and 1/kT= 10, at 
a field h = 0.1. Systems were of length L = 500 and height H =  128 and 
results have been averaged over 64 samples. Simulations were run on a 
Cray Y M P  because it turns out that one needs to average over more 
samples than for the low-temperature case (1/kT= 40). We see that the 
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Fig. 2. Plot of In w 2 versus In t for a field h =0.1 and various inverse temperatures, from 
1/kT=lO to l/kT=l: (a) 1/kT=lO, (b) 1/kT=4, (c) 1/kT=3, (d) 1/kT=2, (e) 1/kT=l. 
Averages have been taken over 64 samples of length L = 500 and height H =  128. We went up 
to t = 2000. The solid lines are last square fits to the data in the range 20 ~< t ~< 1000, except 
in (e), where the fit is in the range 20~<t~<500, giving (a) f l=0.30,  (b) f l=0.268, 
(c) f l=0.258, (d) f l=0.249,  (e) fl =0.256. 
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Fig. 2. (Continued) 
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Fig. 2. (Continued) 

effective exponent 13 is close to 1/4, which is the value in the absence of a 
field, already for 1/kT= 2. For 1/kT-= 2, by a least square fit in the range 
20 ~ t ~< 2000, we obtain 2/3 = 0.50 _+ 0.02. For  1/kT = 2, we tried to increase 
the field, still satisfying (1). For h larger than 1, we started to have some 
problems with nucleation events. For  h = 1, we obtained an effective 
exponent of 2/3 = 0.68 _+ 0.04. This means that the value /~ = 1/3 may be 
retrieved for intermediate temperatures and sufficiently large fields. 

4. CONCLUSION 

In summary, we have performed Monte Carlo simulations of the inter- 
face between the stable and the metastable phases of the two-dimensional 
Ising model in a field evolving through Glauber dynamics. For  small fields 
(of the order of 0.1 in units of the coupling constant), and reasonable 
temperatures (higher than T =  1/3), the effective value of the exponent /3 
governing the short-time increase of the width was found to agree with the 
zero-field prediction /3= 1/4 rather than with the large-field prediction 
/3 = 1/3, which is retrieved only at very low temperatures. This does not 
mean necessarily that there is phase transition, since the value of/3 we 
observe may cross over to 1/3 in the limit of infinite systems. For the sizes 
we used, no crossover is apparent from our simulations. At moderate 
temperatures but higher fields, the value/3 = 1/3 is retrieved. 
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